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1 Introduction

The standard model of quark flavour physics has successfully passed all experimental tests

to date. This includes the observation of a substantial number of rare processes and CP

asymmetries, which are consistently accounted for within the Cabibbo-Kobayashi-Maskawa

(CKM) description of quark mixing. On the other hand, many essential features of the

standard model, most notably in the flavour sector, are still not satisfactorily understood

on a more fundamental level. Deviations from standard expectations, which could guide

us towards a better understanding, appear to be small in general in view of the basic

agreement between theory and observations. In this situation precision tests of flavour

physics become increasingly important, which motivates current efforts to build a Super

Flavour Factory [1, 2]. Such a facility will enable an exciting program in B physics [3, 4].

One of the best opportunities in this respect could be provided by the study of b→ sνν̄

transitions, induced by interactions at very short distances. Theoretically ideal would be an
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inclusive measurement of B → Xsνν̄, where the hadronic matrix element can be accurately

computed using the heavy-quark expansion. Unfortunately, because of the missing neutri-

nos, an inclusive experimental determination of the decay rate is probably unfeasible. More

promising is the measurement of exclusive channels such as B → Kνν̄, B → K∗νν̄. In this

case a clean theoretical interpretation requires, however, the control of nonperturbative

hadronic form factors. Direct calculations of form factors suffer from sizable uncertainties.

Additional experimental input to eliminate nonperturbative quantities can therefore be

very useful. Important examples are the related decays K → πνν̄, where the hadronic

matrix element can be eliminated with the help of K+ → π0e+ν using isospin symmetry.

As discussed in [5], a similar role could be played by the semileptonic mode B → πeν

for the rare decay B → Kνν̄. This strategy is limited by the breaking of SU(3) flavour

symmetry of the strong interaction, which is also difficult to estimate with high accuracy.

In this paper we propose to perform a combined analysis of the rare decays B → Kνν̄

and B → Kl+l−. As we shall discuss, this option has several advantages for controlling

hadronic uncertainties. It allows us to construct precision observables for testing the stan-

dard model and for investigating new physics effects. In particular neither isospin nor

SU(3) flavour symmetry are required and form factor uncertainties can be eliminated to a

large extent.

The paper is organized as follows. Section 2 summarizes the experimental status.

Section 3 collects basic theoretical results. It includes a discussion of B → K form factors,

weak annihilation and nonperturbative corrections in B → Kl+l−, and the background for

B− → K−νν̄ from B− → τ−ν̄τ → K−ντ ν̄τ . Precision observables are discussed in section

4. Section 5 comments on the effects of new physics and conclusions are presented in

section 6. Further details on form factors relations and on weak annihilation are collected

in the appendix.

2 Experimental status

In this section we summarize briefly the current experimental situation. For the branching

ratios of the neutrino modes B̄ → K̄νν̄ only upper limits are available at present. They

read [6–9]

B(B− → K−νν̄) < 14 · 10−6 (2.1)

B(B̄0 → K̄0νν̄) < 160 · 10−6 (2.2)

Here CP averaged branching fractions are understood. We note that the limit is more

stringent for the B− channel.

The most accurate experimental results for B → Kl+l− are from Belle [10]. The

extrapolated, non-resonant branching fraction is measured to be

B(B → Kl+l−) = (0.48+0.05
−0.04 ± 0.03) · 10−6 (2.3)

consistent with results from BaBar [11]. The recent paper [10] also contains information on

the q2-spectrum in terms of partial branching fractions for six separate bins. The results

for the normalized q2-spectrum, adapted from [10], are given in table 1.
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q2[GeV2] s ∆B/B

0.00–2.00 0.00–0.07 0.169 ± 0.038

2.00–4.30 0.07–0.15 0.096 ± 0.027

4.30–8.68 0.15–0.31 0.208 ± 0.042

10.09–12.86 0.36–0.46 0.115 ± 0.031

14.18–16.00 0.51–0.57 0.079 ± 0.033

> 16.00 > 0.57 0.204 ± 0.042

Table 1. The normalized q2-spectrum for B → Kl+l−. Shown are the partial branching fractions

in six bins of q2 (or s = q2/m2
B) from [10], normalized by the central value of the integrated

branching fraction in (2.3). These quantities are denoted by ∆B/B in the table.

3 Theory of B̄ → K̄νν̄ and B̄ → K̄l+l−

3.1 Dilepton-mass spectra and short-distance coefficients

We define the kinematic quantities

s =
q2

m2
B

rK =
m2

K

m2
B

(3.1)

where q2 is the dilepton invariant mass squared and mB is the mass of the B meson. The

kinematical range of q2 and its relation with the kaon energy EK are given by

4m2
l ≃ 0 ≤ q2 ≤ (mB −mK)2 q2 = m2

B +m2
K − 2mBEK (3.2)

We also use the phase-space function

λK(s) = 1 + r2K + s2 − 2rK − 2s− 2rKs (3.3)

The differential branching fractions for B̄ → K̄νν̄ and B̄ → K̄l+l− can then be written

as follows:

dB(B̄ → K̄νν̄)

ds
= τB

G2
Fα

2m5
B

256π5
|VtsVtb|2 λ3/2

K (s)f2
+(s) |a(Kνν)|2 (3.4)

dB(B̄ → K̄l+l−)

ds
= τB

G2
Fα

2m5
B

1536π5
|VtsVtb|2 λ3/2

K (s)f2
+(s)

(

|a9(Kll)|2 + |a10(Kll)|2
)

(3.5)

Here τB is the B-meson lifetime, GF the Fermi constant, α = 1/129 the electromagnetic

coupling and Vts, Vtb are elements of the CKM matrix. A second contribution to the

amplitudes proportional to V ∗
usVub has been neglected. It is below 2% for B̄ → K̄l+l− and

much smaller still for B̄ → K̄νν̄.

The factorization coefficient a(Kνν) is simply given by a short-distance Wilson coef-

ficient at the weak scale, Cν
L, [5]

a(Kνν) = Cν
L = − 1

sin2 ΘW
ηXX0(xt) (3.6)
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where X0 is an Inami-Lim function [12] and xt = m2
t/M

2
W , with mt = m̄t(mt) the MS

mass of the top quark. The factor ηX = 0.994 accounts for the effect of O(αs) correc-

tions [13]. At this order the residual QCD uncertainty is at the level of 1-2% and thus

practically negligible.

The factorization coefficient a9(Kll) contains the Wilson coefficient C̃9(µ) combined

with the short-distance kernels of the B̄ → K̄l+l− matrix elements of four-quark operators

evaluated at µ = O(mb). The coefficient a9(Kll) multiplies the local operator (s̄b)V −A(l̄l)V .

At next-to-leading order (NLO) the result can be extracted from the expressions for the

inclusive decay B̄ → Xsl
+l− given in [12, 14, 15], where also the Wilson coefficients and

operators of the effective Hamiltonian and further details can be found. The NLO coeffi-

cient reads

a9(Kll) = C̃9 + h(z, ŝ) (C1 + 3C2 + 3C3 + C4 + 3C5 + C6)

−1

2
h(1, ŝ) (4C3 + 4C4 + 3C5 + C6)

−1

2
h(0, ŝ) (C3 + 3C4) +

2

9
(3C3 + C4 + 3C5 + C6) +

2mb

mB
C7 (3.7)

Here

C̃9(µ) = P0 +
Y0(xt)

sin2 ΘW
− 4Z0(xt) + PEE0(xt) (3.8)

is the Wilson coefficient in the NDR scheme, P0, PE are QCD factors and E0, Y0, Z0

are Inami-Lim functions. The function h(z, ŝ), z = mc/mb, ŝ = q2/m2
b arises from one-

loop electromagnetic penguin diagrams, which determine the matrix elements of four-quark

operators. In contrast to C̃9 the quantity a9(Kll) is scale and scheme independent at NLO.

To this order the coefficients Ci, i = 1, . . . 7 in (3.7) are needed only in leading logarithmic

approximation (LO). Note that here the labeling of C1 and C2 is interchanged with respect

to the convention of [12].

The coefficient a10(Kll) is

a10(Kll) = C̃10 = − 1

sin2 ΘW
Y0(xt) (3.9)

3.2 Form factors

The long-distance hadronic dynamics of B̄ → K̄νν̄ and B̄ → K̄l+l− is contained in the

matrix elements

〈K̄(p′)|s̄γµb|B̄(p)〉 = f+(s) (p + p′)µ + [f0(s) − f+(s)]
m2

B −m2
K

q2
qµ (3.10)

〈K̄(p′)|s̄σµνb|B̄(p)〉 = i
fT (s)

mB +mK

[

(p+ p′)µqν − qµ(p+ p′)ν
]

(3.11)

which are parametrized by the form factors f+, f0 and fT . Here q = p−p′ and s = q2/m2
B .

The term proportional to qµ in (3.10), and hence f0, drops out when the small lepton

masses are neglected as has been done in (3.4) and (3.5). The ratio fT/f+ is independent
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of unknown hadronic quantities in the small-s region due to the relations between form

factors that hold in the limit of large kaon energy [16, 17]

fT (s)

f+(s)
=
mB +mK

mB
+ O(αs,Λ/mb) (3.12)

Here we have kept the kinematical dependence on mK in the asymptotic result. In contrast

to f+ the form factor fT is scale and scheme dependent. This dependence is of order αs

and has been neglected in (3.12). Within the approximation we are using we may take

µ = mb to be the nominal scale of fT .

We remark that the same result for fT/f+ is also obtained in the opposite limit where

the final state kaon is soft, that is in the region of large s = O(1). This follows from the

asymptotic expressions for f+ and fT in heavy hadron chiral perturbation theory [18–22].

From this observation we expect (3.12) to be a reasonable approximation in the entire

physical domain. This is indeed borne out by a detailed analysis of QCD sum rules on the

light cone [23], which cover a range in s from 0 to 0.5. Relation (3.12) is further discussed

in appendix A.

The ratio fT /f+ enters (3.7) as a prefactor of C7 from the matrix element of the cor-

responding magnetic-moment type operator Q7 [5, 12]. In writing (3.7) the relation (3.12)

has already been used to eliminate fT/f+. Since the C7 term contributes only about 13%

to the amplitude a9(Kll), the impact of corrections to (3.12) will be greatly reduced. A

15% uncertainty, which may be expected for the approximate result (3.12), will only imply

an uncertainty of 2% for a9(Kll) or the B̄ → K̄l+l− differential rate. In practice, this

leaves us with the form factor f+(s) as the essential hadronic quantity for both B̄ → K̄νν̄

and B̄ → K̄l+l−.

The main emphasis of the present study is on the construction of clean observables,

which are, as far as possible, independent of hadronic input. We will therefore consider

suitable ratios of branching fractions where the form factor f+(s) is eliminated to a large

extent. In order to assess the residual form factor uncertainties in these cases, but also to

estimate absolute branching fractions, it will be useful to have an explicit parametrization

of the form factor at hand. We employ the parametrization proposed by Becirevic and

Kaidalov [27] in the form

f+(s) ≡ f+(0)
1 − (b0 + b1 − a0b0)s

(1 − b0s)(1 − b1s)
= f+(0)[1 + a0b0 s+ O(s2)] (3.13)

The parameter b0 is given by

b0 =
m2

B

m2
B∗

s

≈ 0.95 for mB∗

s
= 5.41GeV (3.14)

b0 represents the position of the B∗
s pole and will be treated as fixed, following [27]. The

remaining three parameters a0, b1 and f+(0) have been determined from QCD sum rules

on the light cone (LCSR) in [23]

f+(0) = 0.304 ± 0.042, a0 ≈ 1.5, b1 = b0 (3.15)
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We will treat all three as variable parameters. This also includes b1, slightly generalizing

the expressions from [23] where b1 is fixed at b0. The value for f+(0) in (3.15) is obtained

from the relation [23]

f+(0) = 0.331 ± 0.041 + 0.25(α1(1GeV) − 0.17) (3.16)

using the updated value [24, 25] for the Gegenbauer coefficient α1(1GeV) = 0.06± 0.03 as

quoted in [26].

With b0 fixed, the parameter a0 introduced in (3.13) determines the slope of the form

factor at small s. We remark that the LCSR method is appropriate for the low-s region,

which will be of particular interest for us. For completeness we give the relation of our

parameters f+(0), a0, b1 to the original parameters cB , α ≡ αB , γ ≡ γB from [27]:

f+(0) = cB(1 − αB) , a0 =
γB − αB

γB(1 − αB)
,

b0
b1

= γB (3.17)

As discussed in [27], the large-energy limit for the kaon implies the relation γB = 1/αB or,

equivalently, a0b0 = b0 + b1.

We determine next our default ranges for the shape parameters a0 and b1, which will be

employed in the subsequent phenomenological analysis. Three main pieces of information

will be used: The experimental data on the q2 spectrum in table 1, the LCSR results

in (3.15), and asymptotic results for the form factor at maximum s,

sm =

(

1 − mK

mB

)2

(3.18)

The third constraint will lead to a relation between a0 and b1. It follows from the asymptotic

expression for f+(sm)

f+(sm) =
gfBmB

2fK(mK + ∆)
∆ = mB∗

s
−mB (3.19)

which can be derived within heavy-hadron chiral perturbation theory [18–22]. The largest

uncertainty in (3.19) is due to theBB∗
sK coupling g, sometimes also normalized as gBB∗

s K =

2mBg/fK , which is not known precisely. For the analogous, SU(3) related quantity gBB∗π

a range of gBB∗π = 42 ± 16 is quoted in [27]. This corresponds roughly to g = 0.6 ± 0.2.

In view of this uncertainty, and since the main purpose here is the estimate of typical

numbers, we have neglected subleading corrections to (3.19), which may be sizeable [20].

We recall that g is of order unity in the large-mB limit.

Equating (3.19) with f+(sm) from (3.13) and using

1 − b0sm =
2(mK + ∆)

mB
(3.20)

we obtain
1 − sm(b0 + b1 − a0b0)

1 − smb1
=

gfB

f+(0)fK
≡ c0 ≈ 2.5 ± 1.0 (3.21)

We note that the denominator of the first term in (3.21), 1 − smb1, scales as 1/mB in the

heavy-quark limit, whereas the numerator remains of order unity (if a0 is not too far below

– 6 –
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H
H

H
H

H
H

b1/b0

a0
1.0 1.2 1.4 1.6 1.8 2.0

0.5 20.2 14.7 11.0 8.8 7.5 7.1

0.6 20.2 14.2 10.3 8.0 6.9 6.7

0.7 20.2 13.5 9.4 7.1 6.2 6.4

0.8 20.2 12.7 8.3 6.2 5.7 6.4

0.9 20.2 11.8 7.1 5.3 5.5 7.0

1.0 20.2 10.5 5.7 4.7 6.2 9.2

Table 2. Values of χ2 for various combinations of the form factor shape parameters a0 and b1,

determined from a comparison with the Belle data on the q2 spectrum of B → Kl+l− (see table 1).

its typical value of 1.5). The first term then scales as mB, consistent with the heavy-quark

scaling of the second expression.

The constraint (3.21) can also be put in the form

c0 − 1 =
a0 − 1
1

smb0
− b1

b0

(3.22)

Numerically we have 1/(smb0) = 1.279. Within the uncertainty of c0, displayed in (3.21)

above, (3.22) implies a correlation between the shape parameters a0 and b1/b0.

Independently of such theory constraints we might ultimately want to extract the form

factor shape from experimental data. In this spirit, we have investigated how well different

values of (a0, b1/b0) fit the current Belle measurements of the dilepton-mass spectrum in

B → Kl+l−. For this purpose we show in table 2 the χ2-function

χ2(a0, b1) =
6

∑

i=1

(yi − Fi(a0, b1))
2

σ2
i

(3.23)

where the yi, i = 1, . . . , 6, are the experimental values for the normalized, partial branching

fractions ∆B/B in each of the six bins, the σi are the corresponding errors, and the Fi

are the theoretical expressions depending on (a0, b1). It is clear that the experimental data

are at present not accurate enough to allow for a precise determination of the form factor

shape. However, the situation should improve in the future. At the moment our analysis

merely serves to illustrate the general method. Nevertheless, some regions of parameter

space are already disfavoured, in particular low values of a0, which, as discussed above, is

consistent with theoretical expectations. We also observe that the best fit is obtained for

a0 = 1.6, b1/b0 = 1. A comparison of the best-fit shape of the theoretical spectrum with

the Belle data is shown in figure 1

Combining the information above, we adopt the following default ranges for the

shape parameters

1.4 ≤ a0 ≤ 1.8 0.5 ≤ b1/b0 ≤ 1.0 (3.24)

with

a0 = 1.6 b1/b0 = 1.0 (3.25)

– 7 –
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0.0 0.2 0.4 0.6 0.8
s0.0

0.5

1.0

1.5

2.0

2.5

3.0
HdB�dsL�B

Figure 1. The shape of the B̄ → K̄l+l− spectrum, (dB/ds)/B, from the Belle data summarized

in table 1 (crosses) and from theory with the best-fit shape parameters a0 = 1.6, b1/b0 = 1

(solid curve).

as our reference values. Within the range (3.24) for a0 and b1/b0 the parameter c0 in (3.22)

takes values between 1.5 and 3.9, compatible with (3.21). Our default parameters (3.25)

are also consistent with the LCSR results [23] quoted in (3.15).

3.3 B̄ → K̄l+l−: weak annihilation

As pointed out in [28], the exclusive decay B̄ → K̄l+l− receives contributions from

weak annihilation diagrams already at leading order in the heavy-quark limit. In spite

of this their impact is numerically small because of a strong CKM suppression (for the

charged mode) or small Wilson coefficients (for the neutral mode). In this section we will

quantify the size of weak annihilation. Since this contribution is small we work to leading

order in αs.

First we consider the case of B̄0 → K̄0l+l−, and the region of low s ∼ Λ/mb. Weak an-

nihilation can then only come from penguin operators giving rise to the transition bd̄→ sd̄.

A virtual photon emitted from one of the quarks produces the lepton pair. The leading

annihilation contribution in the heavy-quark limit is generated by the gluon-penguin op-

erators Q3 and Q4 [12]. This effect can be evaluated using the methods of QCD factor-

ization [28, 29] as discussed in more detail in appendix B. The resulting correction to the

coefficient a9(Kll) reads

∆a9,WA,34 =

(

C4 +
1

3
C3

)

8π2QdfBfK

mBf+(s)

∫ ∞

0
dω

φ−(ω)

ω − smB − iǫ
(3.26)

Here fB , fK are the meson decay constants and Qd = −1/3 is the charge of the down-

quark in the initial state. The leading light-cone distribution amplitudes of the B meson

can be expressed by two functions, φ±(ω), of which only φ− enters the integral in (3.26).

For annihilation contributions scale dependent quantities such as the Wilson coefficients

C3,4 will be evaluated at a hard-collinear scale of µh =
√
µΛh, where µ = O(mb) and

Λh = 0.5GeV, following [29].

– 8 –
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Our result (3.26) for weak annihilation agrees with eq. (68) of [28], once it is adapted

to the case of a pseudoscalar K meson as described immediately after eq. (69) of [28].1

For estimates of the annihilation effect we employ the model functions [30]

φ+(ω) =
ω

ω2
0

e−ω/ω0 φ−(ω) =
1

ω0
e−ω/ω0 (3.27)

where ω0 = O(ΛQCD) serves to parametrize the uncertainty related to φ±. A summary

of general properties of these wave functions can be found in [17, 28]. They are satisfied

by the parametrizations in (3.27). With φ−(ω) from (3.27), and denoting by Ei(z) the

exponential integral function, the integral in (3.26) can be expressed as [28]

λ−1
B,−(s) ≡

∫ ∞

0
dω

φ−(ω)

ω − smB − iǫ
=

1

ω0
e−smB/ω0 [−Ei(smB/ω0) + iπ] (3.28)

At a typical value of s = 0.1 we have a9 = 3.96 + 0.05i and ∆a9,WA,34 = −0.036 + 0.034i.

The correction (3.26) is seen to reduce the real part of a9 by a small amount, which leads to

a corresponding reduction of the branching fraction. This holds if s ≥ 0.37ω0/mB ≈ 0.025.

Since the imaginary part of a9 is much smaller than the real part, its impact on the decay

rate is entirely negligible. Practically it is thus of no consequence that the imaginary part

of the correction is comparable to the one of a9 and that Im a9 is rather uncertain. Of

particular interest for us is the size of the annihilation effect on the partially integrated

branching fraction. For ω0 = (0.350 ± 0.150)GeV, mb/2 ≤ µ ≤ 2mb the reduction of

the branching fraction integrated within 0.03 ≤ s ≤ 0.25 is at most 1%, which is indeed

very small.

Weak annihilation contributions to B̄0 → K̄0l+l− also come from the remaining two

QCD penguin operatorsQ5 andQ6. Because these have a chiral structure different fromQ3,

Q4, their contribution to weak annihilation is formally suppressed in Λ/mb. It turns out,

however, that the suppression is not very effective numerically in this particular case. A

similar situation is familiar from the factorizing matrix elements of Q5 and Q6 for B decays

into a pair of light pseudoscalar mesons [29]. The explicit calculation of the annihilation

correction to a9(Kll) from Q5 and Q6 proceeds as before and yields

∆a9,WA,56 = −
(

C6 +
1

3
C5

)

16π2QdfBfKµK

m2
Bf+(s)

∫ ∞

0
dω

φ−(ω)

ω − smB − iǫ
(3.29)

In comparison to (3.26) the correction in (3.29) carries, apart from the Wilson coefficients,

a relative factor of −2µK/mB ≈ −0.75, where µK = µπ = m2
π/(mu + md) [29]. Here

mu, md are the MS masses evaluated at the scale µh. As anticipated, this relative fac-

tor is not small, although it is of O(Λ/mb). A typical value for (3.29), at s = 0.1, is

∆a9,WA,56 = 0.045 − 0.043i. The sign of the real part is opposite to the case of ∆a9,WA,34

such that there is a tendency of the two contributions to cancel. Because |C6+C5/3| is larger

than |C4 +C3/3|, it is possible that (3.29) even dominates over (3.26). Of course, (3.29) is

1A factor of (−2mb/MB) is missing in front of the annihilation term on the r.h.s. of eq. (41) in [28]. We

thank Thorsten Feldmann for confirmation.
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formally a power correction and other power corrections to weak annihilation do exist. How-

ever, the numerically large factor 2µK/mB is special to the annihilation matrix element of

Q6 = −2(d̄b)S−P (s̄d)S+P with the presence of (pseudo)scalar currents. Taking into account

the single power correction (3.29) thus appears justified. Adding both corrections, (3.26)

and (3.29), the net effect on the branching ratio integrated from s = 0.03 to 0.25 is a tiny

enhancement. This enhancement remains below about 0.3% for ω0 = (0.350 ± 0.150)GeV

and mb/2 ≤ µ ≤ 2mb.

To summarize, the weak annihilation contributions to B̄0 → K̄0l+l−, which arise from

QCD penguin operators, are negligibly small in practice, even though they are a leading-

power effect. If the presumably dominant (chirally enhanced) power correction (3.29) is

also included, the total impact of weak annihilation is further reduced.

In the case of the charged mode B− → K−l+l− the weak annihilation terms from QCD

penguin operators are given by the expressions (3.26) and (3.29) with the replacement of

the quark charge Qd → Qu. Numerically the effect then receives an additional factor

of −2, which still yields a negligible correction at the level of about one percent. Weak

annihilation through the tree operators Q1 and Q2, which exists only for the charged mode,

comes with large Wilson coefficients, but also with a strong Cabibbo suppression. This

correction reads

∆a9,WA,12u = −V
∗
usVub

V ∗
tsVtb

(

C1 +
1

3
C2

)

8π2QufBfK

mBf+(s)

∫ ∞

0
dω

φ−(ω)

ω − smB − iǫ
(3.30)

With (3.30) the branching ratio integrated from s = 0.03 to 0.25 is reduced by less

than about 0.6% for ω0 = (0.350 ± 0.150)GeV and mb/2 ≤ µ ≤ 2mb. Taking the three

contributions from Q1,2, Q3,4 and Q5,6 together, the reduction remains below 1%. Within

an uncertainty of this order, weak annihilation is therefore negligible for B− → K−l+l−

as well.

3.4 B̄ → K̄l+l−: nonperturbative corrections

In this section we comment on the theoretical framework for B̄ → K̄l+l− and on

nonperturbative effects beyond those that are contained in the form factors.

It is well known that, because of huge backgrounds from B̄ → K̄ψ(′) → K̄l+l−, the

region of q2 containing the two narrow charmonium states ψ = ψ(1S) and ψ′ = ψ(2S)

has to be removed by experimental cuts from the q2 spectrum of B̄ → K̄l+l−. The over-

whelming background from ψ and ψ′ is related to a drastic failure of quark-hadron duality

in the narrow-resonance region for the square of the charm-loop amplitude, as has been

discussed in [31]. Nevertheless, the parts of the q2 spectrum below and above the narrow-

resonance region remain under theoretical control and are sensitive to the flavour physics

at short distances. A key observation here is that the amplitude is largely dominated by

the semileptonic operators

Q9 = (s̄b)V −A(l̄l)V

Q10 = (s̄b)V −A(l̄l)A (3.31)
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which have large coefficients C̃9 and C̃10. These contributions are perturbatively calculable

up to the long-distance physics contained in the form factor f+(s). The B̄ → K̄l+l− matrix

elements of four-quark operators, such as (s̄b)V −A(c̄c)V −A, are more complicated, but still

systematically calculable. Schematically, the B̄ → K̄l+l− rate is proportional to

|C̃9 + ∆4q|2 + |C̃10|2 (3.32)

where ∆4q represents contributions from four-quark operators, for instance charm loops

or annihilation effects. In the present discussion we ignore the small contribution from

C7, which has already been discussed in section 3.2. Typical values are C̃9 = 4.2, C̃10 =

−4.2 and, for the charm-loop amplitude ∆4q ≈ (C1 + 3C2)h(z, ŝ) ≈ 0.3. The last figure

corresponds to an average within 0 < s < 0.25. For large s the charm loop develops an

imaginary part, but the magnitude is of similar size. Annihilation effects are negligible as

shown in section 3.3. Thus ∆4q is only about a 10% effect, both as a correction to the C̃9

amplitude and to the total rate. Because this term is numerically subleading the impact

of any uncertainties in its evaluation will be suppressed. We briefly discuss the theory of

∆4q in the regions of low and high q2.

In the low-q2 region ∆4q can be computed using QCD factorization [28]. This approach,

which is based on the heavy-quark limit and the large energy of the recoiling kaon, should

work well for the real part of the amplitude in view of the experience from two-body

hadronic B decays [32] and B → K∗γ [33]. Power corrections of order Λ/mb ∼ 0.1 in ∆4q

give only percent level corrections for the differential rate. The charm loops receive also

corrections of order Λ2/m2
c [34], which have been estimated at the level of a few percent for

the exclusive decay B → K∗γ [35]. Since the charm loops are relatively less important in

B̄ → K̄l+l− by about a factor of five in the rate, the impact of the correction is reduced.

On the other hand, the effect increases somewhat as q2 approaches the resonance region.

In the inclusive case b→ sl+l− it amounts to a few percent [36], averaged over the low-q2

region. We therefore conclude that the Λ2/m2
c correction is unlikely to affect B̄ → K̄l+l−

in an appreciable way.

Any quark-level calculation of physical amplitudes involves the concept of quark-

hadron duality. There are no indications that this assumption, applied to the charm-loops

for small q2 up to about 7GeV2 (s = 0.25), would introduce an error in excess of power

corrections or perturbative uncertainties [31].

Light-quark loops are generally suppressed by small Wilson coefficients (QCD pen-

guins) or small CKM factors. Violations of local quark-hadron duality could come from

the presence of light vector resonances at low q2. To get an order-of-magnitude estimate

we consider the branching ratio of the decay chain B− → K−ρ0 → K−e+e−, which is

measured to be [6]

B(B− → K−ρ0) ×B(ρ0 → e+e−) =

(4.2 ± 0.5) · 10−6 × (4.71 ± 0.05) · 10−5 = (2.0 ± 0.2) · 10−10 (3.33)

This contribution arises from the |∆4q|2 term in (3.32) for which quark-hadron duality

cannot be expected to hold [31]. However, like similar contributions with other light

vector resonances, it clearly gives a negligible contribution. Resonance effects could be
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more important in the interference of ∆4q with C̃9 in (3.32). In this case they are part

of the hadronic amplitude that is dual to light-quark loops in the partonic calculation.

Oscillations in s due to light resonances are bound to be small because of the smallness of

the light-quark loops. Integration over the low-q2 region will further reduce such violations

of local duality to a negligible level.

In the high-q2 region the appropriate theoretical framework for the computation of

∆4q is an operator product expansion exploiting the presence of the large scale q2 ∼ m2
b .

This concept has been used in [22] in analyzing the endpoint region of b→ sl+l−, which is

governed by few-body exclusive modes. A systematic treatment, including the discussion

of subleading corrections, has been given in [37]. Power corrections are generally smaller

than for low q2. Terms of order Λ/mb arise at order αs [37] and the analogue of the Λ2/m2
c

corrections at small q2 now contribute only at order Λ2/m2
b [36]. More important are

perturbative corrections to the leading-power term, which however can be systematically

improved. Finally, uncertainties could come from violations of local quark-hadron duality.

By duality violation we mean deviations of the OPE calculation, at fixed q2 and in principle

including all perturbative and power corrections, from the real-world hadronic result. Such

violations are related in particular to oscillations of ∆4q in s due to higher charmonium

resonances. These oscillations are absent in the smooth OPE result. To first order in ∆4q

only its real part contributes to (3.32). Implementing the higher charmonium resonances,

ψ(3770), ψ(4040), ψ(4160), ψ(4415), and the hadronic cc̄ continuum in the approximation

of Krüger and Sehgal [38], we estimate the relative amplitude of oscillations in C̃9 +Re∆4q

to be of order 10 to 20%. We expect these local variations to be averaged out when the

spectrum is integrated over s [22] such that the residual uncertainty will be somewhat re-

duced. The s-integration, which is also phenomenologically motivated, effectively produces

a smearing that leads to a more ‘globally’ defined quantity where duality is better fulfilled.

As discussed in [31], global duality in this sense cannot be expected to hold for the second

order term |∆4q|2 in (3.32). On the other hand, this contribution is numerically very small,

at the level of few percent, and duality violations will only have a minor effect. To illus-

trate this point we consider the decay chain B− → K−ψ(3770) → K−e+e−, which can be

viewed as a resonance contribution to |∆4q|2. In the case of the narrow charmonium states

a similar contribution leads to the very large resonance background mentioned above. Here

we have [6]

B(B− → K−ψ(3770)) ×B(ψ(3770) → e+e−) =

(4.9 ± 1.3) · 10−4 × (9.7 ± 0.7) · 10−6 = (4.8 ± 1.3) · 10−9 (3.34)

This indicates that resonance contributions are rather small, in agreement with our previous

remarks. In conclusion, we have argued that duality violations from the resonance region

at high q2 are at a moderate level and should not spoil a precision of theoretical predictions

for (partially) integrated branching ratios of B̄ → K̄l+l− at the level of several percent. A

more detailed investigation of this issue would be of interest and will be given elsewhere.

In the present analysis we ignore higher order electroweak and QED radiative

corrections. The latter could modify the decay modes and their ratios presumably at the

level of several percent. The leading effects could be taken into account if it should be

required by the experimental precision.
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MW

[

GeV
]

m̄t(m̄t)
[

GeV
]

mB

[

GeV
]

mK

[

GeV
]

mB∗

s

[

GeV
]

80.4 166 5.28 0.496 5.41

m̄b

[

GeV
]

m̄c

[

GeV
]

α sin2 θW |V ∗
tsVtb|

4.2 1.3 1/129 0.23 0.039

f+(0) fB

[

GeV
]

fK

[

GeV
]

ΛMS,5

[

GeV
]

τB+ (τB0)
[

ps
]

0.304 ± 0.042 0.2 0.16 0.225 1.64 (1.53)

Table 3. Input parameters.

3.5 B−

→ K−νν̄: background from B−

→ τ−ν̄τ → K−ντ ν̄τ

The decay B− → τ−ν̄τ followed by τ− → K−ντ produces a background for the short-

distance reaction B− → K−νν̄, which has been discussed recently in [39]. The branching

fractions of B− → τ−ν̄τ and τ− → K−ντ are given by

B(B− → τ−ν̄τ ) = τB
G2

FmBm
2
τf

2
B

8π
|Vub|2

(

1 − m2
τ

m2
B

)2

= 0.87 · 10−4

(

fB

0.2GeV

)2 ( |Vub|
0.0035

)2

(3.35)

B(τ− → K−ντ ) = ττ
G2

Fm
3
τf

2
K

16π
|Vus|2

(

1 − m2
K

m2
τ

)2

= 7.46 · 10−3 (3.36)

The numerical values are based on the input parameters in table 3. The background

from the decay chain B− → τ−ν̄τ → K−ντ ν̄τ gives a contribution to the dilepton-mass

spectrum, which can be written as

dB(B− → K−ντ ν̄τ )bkgr

ds
= B(B− → τ−ν̄τ )B(τ− → K−ντ )

2t((1 − t)(t− rK) − ts)

(1 − t)2(t− rK)2

(3.37)

where we used (3.1) and t ≡ m2
τ/m

2
B . The spectrum in (3.37) extends from s = 0 to s = (1−

t)(1−rK/t) = 0.818. The maximum s happens to coincide almost exactly with the endpoint

of the spectrum in the short-distance decay B− → K−νν̄, sm = 0.821 [39]. Integrated over

the full range in s, the phase-space factor in (3.37) gives 1. This reproduces the result for

B(B− → K−ντ ν̄τ )bkgr in the narrow-width approximation for the intermediate τ lepton.

If the decay sequence B− → τ−ν̄τ → K−ντ ν̄τ cannot be distinguished experimentally

from the short-distance decay B− → K−νν̄, this background should be subtracted from

the measured rate of B− → K− + “invisible” to obtain the true short-distance branching

fraction. In the standard model we find from (3.35) and (3.36)

B(B− → K−ντ ν̄τ )bkgr = (0.65 ± 0.16) · 10−6 (3.38)

assuming an uncertainty of 25% due to fB and |Vub|. The central value amounts to

about 15% of the short-distance branching fraction (4.1). A subtraction of (3.38) from

the measured branching ratio would then lead to an uncertainty of about 0.16/4.4 = 4%
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on B(B− → K−νν̄). This error might be further reduced in the future with improved

determinations of fB and |Vub|.
Probably the best method to control the background is to use the experimental mea-

surement of B(B− → τ−ν̄τ ). In this way, any new physics component in the latter decay

will automatically be removed from the measurement of B− → K−νν̄. This will simplify

the new physics interpretation of the measured B(B− → K−νν̄). The present experimental

value for B(B− → τ−ν̄τ ) is [7, 40, 41]

B(B− → τ−ν̄τ )exp = (1.43 ± 0.37) · 10−4 (3.39)

Together with (3.36) this gives

B(B− → K−ντ ν̄τ )bkgr = (1.1 ± 0.28) · 10−6 (3.40)

The 26% uncertainty in (3.39) thus implies an error of about 6% in B(B− → K−νν̄),

assuming the central value of (4.1). However, by the time when B(B− → K−νν̄) will be

measured at a Super Flavour Factory, B(B− → τ−ν̄τ ) will be simultaneously known with

high precision. According to [3, 4] the expected accuracy is about 4% or better. Assuming

the central values of (3.39) and (4.1) as before, the background subtraction will then lead

to an error of only about 1% in B(B− → K−νν̄).

We conclude that the background from B− → τ−ν̄τ → K−ντ ν̄τ pointed out in [39]

has to be taken into account for a precise measurement of the short-distance branching

fraction B(B− → K−νν̄). It needs to be subtracted from the experimental signal, but

this should ultimately be possible with essentially negligible uncertainty. The background

discussed here is absent in the case of the neutral mode B̄0 → K̄0νν̄.

4 Precision observables

4.1 Theory expectations for branching fractions

The input parameters we will use in the present analysis are collected in table 3.

To begin our discussion of numerial results we consider first the integrated branching

ratios of B− → K−νν̄ and B− → K−l+l−. For the neutrino mode we find

B(B− → K−νν̄) · 106 = 4.4 +1.3
−1.1 (f+(0)) +0.8

−0.7 (a0)
+0.0
−0.7 (b1) (4.1)

We have displayed the sensitivity to the form factor parameters, which are by far the

dominant sources of uncertainty. The form factor normalization f+(0) has the largest

impact, while the shape parameters are relatively less important.

The fully integrated, non-resonant B̄ → K̄l+l− branching fraction can be evaluated in a

similar way. This quantity corresponds essentially to the experimental result in (2.3), which

has been obtained by cutting out the large background from the two narrow charmonium

resonances and by extrapolating the measurements to the entire q2 range to recover the

total non-resonant rate. The precise correspondence between theoretical and experimental

results will depend on the details of the cuts and the extrapolation procedure. We will treat

the resonance region more carefully later when we study precision observables. For our
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Figure 2. The dilepton invariant-mass spectra for B̄ → K̄νν̄ (solid) and B̄ → K̄l+l− (dashed).

For easier comparison of the shapes the plotted differential branching fractions, dB/ds versus s =

q2/m2
B, were normalized by their integralB. The reference values have been used for all parameters.

present discussion we simply identify the integral over the non-resonant spectrum in (3.5)

with the measurement in (2.3). This appears justified as the error from this identification

is expected to be below the experimental uncertainty. Adopting these considerations we

compute

B(B− → K−l+l−) · 106 = 0.58 +0.17
−0.15 (f+(0)) +0.10

−0.09 (a0)
+0.00
−0.09 (b1)

+0.04
−0.03 (µ) (4.2)

In addition to the still dominant dependence on the form factor we have in this case a

non-negligible perturbative uncertainty, which we estimate in the standard way through

a variation of the scale µ between mb/2 and 2mb around the reference value of µ = mb.

The scale dependence is at a rather moderate level of ±6% with NLO accuracy, much

smaller than the error from the hadronic parameters. Within sizeable, mainly theoretical

uncertainties, the prediction (4.2) is in agreement with the measurement in (2.3).

Whereas the individual branching fractions (4.1) and (4.2) suffer from large hadronic

uncertainties, we expect their ratio to be under much better theoretical control. It is obvi-

ous that the form factor normalization f+(0) cancels in this ratio. Moreover, as illustrated

in figure 2, the shape of the q2 spectrum is almost identical for the two modes. This

is because the additional q2-dependence from charm loops in B → Kl+l−, compared to

B → Kνν̄, is numerically only a small effect outside the region of the narrow charmonium

states. As a consequence, also the dependence on the form factor shape will be greatly

reduced in the ratio

R =
B(B− → K−νν̄)

B(B− → K−l+l−)
(4.3)

Numerically we find

R = 7.59 +0.01
−0.01 (a0)

+0.00
−0.02 (b1)

−0.48
+0.41 (µ) (4.4)

This prediction is independent of form factor uncertainties for all practical purposes. It is

limited essentially by the perturbative uncertainty at NLO of ±6%. Using the experimental
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result in (2.3), the theory prediction (4.4), and assuming the validity of the standard model,

we obtain

B(B− → K−νν̄) = R · B(B− → K−l+l−)exp = (3.64 ± 0.47) · 10−6 (4.5)

With an accuracy of ±13%, limited at present by the experimental error, this result is

currently the most precise estimate of B(B− → K−νν̄).

Since isospin breaking effects in the decay rates are very small, the branching ratios

for the decays B̄0 → K̄0νν̄ and B̄0 → K̄0l+l− are given by the branching ratios for the

corresponding B− modes multiplied by a factor of τ(B̄0)/τ(B−) = 0.93.

4.2 Precision observables: ratios of branching fractions

In order to obtain theoretically clean observables, the region of the two narrow charmonium

resonances ψ(1S) and ψ(2S) has to be removed from the q2 spectrum of B → Kl+l−. This

leaves two regions of interest, the low-s region below the resonances, and the high-s region

above. For the present analysis we define these ranges as

low s : 0 ≤ s ≤ 0.25

high s : 0.6 ≤ s ≤ sm
(4.6)

The resonance region 0.25 < s < 0.6 corresponds to the q2 range 7GeV2 < q2 < 16.7GeV2.

For our standard parameter set the total rate for B → Kνν̄ or B → Kl+l− (non-resonant)

is divided among the three regions, low-s, narrow-resonance, high-s, as 35 : 48 : 17.

We first concentrate on the low-s region, where B− → K−l+l− can be reliably calcu-

lated. To ensure an optimal cancellation of the form factor dependence, one may restrict

also the neutrino mode to the same range in s and define

R25 ≡
∫ 0.25
0 ds dB(B− → K−νν̄)/ds

∫ 0.25
0 ds dB(B− → K−l+l−)/ds

(4.7)

This ratio is determined by theory to very high precision. Displaying the sensitivity to the

shape parameters and the renormalization scale one finds

R25 = 7.60−0.00
+0.00 (a0)

−0.00
+0.00 (b1)

−0.43
+0.36 (µ) (4.8)

The form factor dependence is seen to cancel almost perfectly in R25. The shape para-

meters affect this quantity at a level of only 0.5 per mille. One is therefore left with the

perturbative uncertainty, estimated here at about ±5% at NLO.

The independence of any form factor uncertainties in R25 comes at the price of using

only 35% of the full B− → K−νν̄ rate. We therefore consider a different ratio, which is

defined by

R256 ≡
∫ sm

0 ds dB(B− → K−νν̄)/ds
∫ 0.25
0 ds dB(B− → K−l+l−)/ds +

∫ sm

0.6 ds dB(B− → K−l+l−)/ds
(4.9)

In this ratio the fully integrated rate of B− → K−νν̄ is divided by the integrated rate

of B− → K−l+l− with only the narrow-resonance region removed. This ensures use of
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the maximal statistics in both channels. Due to the missing region in B− → K−l+l− the

dependence on the form factor shape will no longer be eliminated completely, but we still

expect a reduced dependence. Numerically we obtain, using the same input as before,

R256 = 14.60 +0.28
−0.38 (a0)

+0.10
−0.02 (b1)

−0.80
+0.62 (µ) (4.10)

This estimate shows that the uncertainty from a0 and b1 is indeed very small, at a level

of about ±3%. With better empirical information on the shape of the spectrum this could

be further improved.

We conclude that ratios such as those in (4.7) and (4.9), or similar quantities with

modified cuts, are theoretically very well under control. They are therefore ideally suited

for testing the standard model with high precision.

4.3 Precision observables: B̄ → K̄l+l− with lattice input

Until now our strategy has been to achieve accurate predictions by eliminating the

form factor dependence altogether. A variant of our analysis consists in taking a single

hadronic parameter, the form factor at one particular value of q2, f+(s0), s0 = q20/m
2
B , as

additional theory input. The shape of the form factor can be fitted to the experimental

spectrum as discussed in section 3.2. At the expense of one extra hadronic parameter it is

then possible to probe short distance physics based on B̄ → K̄l+l− alone. The necessary

input f+(s0) could come from lattice QCD calculations.

This approach is analogous to the method pursued in [42] to determine |Vub| from

B → πlν. In this case lattice results on the B → π form factor at a typical value of

q2 = 16GeV2 were considered as theory input. Experimental data on the spectrum and

decay rate of B → πlν can then be used to extract |Vub|. In order to describe the form factor

shape, [42] employed dispersive bounds and a related class of general parametrizations [43–

45]. These more sophisticated parametrizations may also be applied in our case, if more

than two shape parameters should be required to fit the data with the appropriate precision.

For the time being the form factor parametrization used here is completely sufficient. As

shown in [42], the limiting factor is the value of f+(s0). We remark that in the case

of B̄ → K̄l+l−, the narrow-resonance region should be removed from the analysis when

performing the fit to the form factor shape.

To illustrate the method we extract the form factor f+(s0) at point s0 = 16GeV2/m2
B

from the measurement in (2.3). Using the best-fit shape parameters a0 = 1.6 and b1/b0 = 1

we obtain

f+(s0) = 1.05 ± 0.06 (BR) ± 0.03 (µ) (4.11)

where the first error is from the measured branching ratio in (2.3) and the second error

is from scale dependence. The sensitivity to the shape parameters is comparable to the

uncertainty from the branching ratio.

Unlike the parameters a0 and b1, the value of f+(s0) determined in this way, assuming

the standard model, is sensitive to the normalization of the branching ratio and therefore

to new physics effects. These could be detected through a comparison with QCD

calculations of f+(s0). Our default choice of hadronic parameters leads to f+(s0) = 1.16
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but the uncertainty is larger than 15%. Within the coming five to ten years a precision of

±4% might be achieved for the form factor f+(s0) in lattice QCD [26].

5 New physics

The branching fractions of B → Kνν̄ and B → Kl+l− are sensitive to physics beyond

the standard model. If the new physics would modify both of them by (almost) the same

factor, this change would not be visible in the ratios R25 or R256 discussed in section 4.

In that case, the new physics could still be seen by studying B → Kl+l− separately with

the method described in section 4.3. An example is a scenario with modified Z-penguin

contributions [5] interfering constructively with the standard model terms. In this case R25

is changed only by a small amount.

In general, however, nonstandard dynamics will have a different impact on B → Kνν̄

and B → Kl+l−. The excellent theoretical control over the ratios R25 or R256 will help to

reveal even moderate deviations from standard model expectations.

One example is the scenario with modified Z-penguin contributions [5] mentioned

before, if these contributions interfere destructively with those of the standard model. In

that case the ratios R25 or R256 could be significantly suppressed. The modified Z-penguin

scenario may be realized, for instance, in supersymmetric models [5, 46].

Another class of theories that do change the ratios are those where B → Kl+l−

remains standard model like while B → Kνν̄ receives an enhancement (or a suppression).

Substantial enhancements of B(B → Kνν̄) are still allowed by experiment, in fact much

more than for B → Kl+l−.

A first example are scenarios with light invisible scalars S contributing to B → KSS,

which has been suggested in [47, 48] as an efficient probe of light dark matter particles.

B → KSS is also discussed in [46]. This channel adds to B → Kνν̄, which is measured

as B → K + invisible. If the scalars have nonzero mass, B → KSS could be distinguished

from B → Kνν̄ through the missing-mass spectrum. On the other hand, if the mass of

S is small, or the resolution of the spectrum is not good enough, a discrimination of the

channels may be difficult. The corresponding increase in B(B → Kνν̄) could be cleanly

identified through the ratios R25 and R256. Similar comments apply to the case where

the invisible particles are light (or massless) neutralinos χ̃0
1, which are still allowed in the

MSSM [49]. Substantial enhancements of B → K + invisible over the standard model

expectation through B → Kχ̃0
1χ̃

0
1 are possible in the MSSM with non-minimal flavour

violation [50].

A further example is given by topcolor assisted technicolor [51]. A typical scenario

involves new strong dynamics, together with extra Z ′ bosons, which distinguishes the third

generation from the remaining two. The resulting flavour-changing neutral currents at tree

level may then predominantly lead to transitions between third-generation fermions such as

b→ sντ ν̄τ . An enhancement of B(B → Kνν̄) would result and might in principle saturate

the experimental bound (2.1). An enhancement of 20%, which should still be detectable,

would probe a Z ′-boson mass of typically MZ′ ≈ 3TeV. A similar pattern of enhanced

B → Kνν̄ and SM like B → Kl+l− is also possible in generic Z ′ models [46].
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A more detailed exploration of new physics in B → Kνν̄ and B → Kl+l− is beyond the

scope of this article. The examples mentioned above illustrate that the ratios of branching

fractions considered here exhibit a significant sensitivity to interesting new physics scenar-

ios. The subject of new physics in b→ sνν̄ transitions has been discussed in [52] and more

recently in [46–48, 50]. New physics in B → Kl+l− has been studied in [53], including the

information from angular distributions.

6 Conclusions

In this paper we have studied precision tests of the standard model through a combined

analysis of B → Kνν̄ and B → Kl+l−. The main points can be summarized as follows:

• After removing the narrow-resonance region the branching fraction of B → Kl+l−

can be reliably computed. The dominant amplitude from semileptonic operators is

simply a calculable expression times the form factor f+. QCD factorization for low

q2 and OPE for high q2 allow one to treat also matrix elements of 4-quark operators

in a systematic way. These are dominated by charm loops, which are numerically

small contributions to begin with. Since the tensor form factor fT can be related to

f+ in the heavy-quark limit, the entire B → Kl+l− amplitude becomes calculable in

terms of practically a single hadronic quantity, the form factor f+(s).

• The decay mode B → Kνν̄ is a particularly clean process. It is completely deter-

mined by short-distance physics at the weak scale up to the same form factor f+(s).

For the charged mode the background due to B− → τ−ν̄τ → K−ντ ν̄τ should be sub-

tracted from the experimental signal, but this will be possible without introducing

any appreciable uncertainty.

• The form factor uncertainty can be eliminated by constructing suitable ratios of

(partially) integrated rates such as R25 in (4.7) and R256 in (4.9). The resulting

quantities can be computed with high accuracy. The cancellation of form factors is

exact and does not require the use of approximate flavour symmetries.

• The perturbative uncertainty of the ratios is estimated to be ±5% at next-to-leading

order (NLO). This can be further improved by a NNLO analysis along the lines

of [28]. Uncertainties from other sources are at the level of several percent. Some

refinements in controlling them should still be possible.

• Based on the current measurements of B− → K−l+l− we predict

B(B− → K−νν̄) = (3.64 ± 0.47) · 10−6 , (6.1)

at present the most accurate estimate of this quantity.

• The ratios of B → Kνν̄ and B → Kl+l− rates have an interesting sensitivity to new

physics. The new physics reach benefits from the high accuracy of the standard model

predictions. A complementary new physics test is possible based on B → Kl+l−
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alone, exploiting experimental information on the q2 spectrum, if f+ at one particular

value of q2 is used as input from lattice QCD.

• New physics in the Wilson coefficients factorizes from low-energy hadronic physics in

a simple way. The latter is essentially contained only in f+. Our analysis can thus

be generalized to specific new physics scenarios in a straightforward manner.

Our proposal puts B → Kνν̄ as a new physics probe in the same class as K → πνν̄, the

‘golden modes’ of kaon physics. B → Kνν̄ together with B → Kl+l− thus hold exciting

opportunities for B physics at a Super Flavour Factory.

A Relation between form factors fT and f+

The three form factors in (3.10) and (3.11), fT (s), f+(s), and f0(s) or equivalently

f−(s) ≡ [f0(s) − f+(s)]
m2

B −m2
K

q2
(A.1)

are related in the heavy-quark limit. If we multiply (3.10) and (3.11) by vµ ≡ pµ/mB and

use the equation of motion for the heavy quark, 6vb = b, we find

2mB

mB +mK
fT = f+ − f− (A.2)

Similarly, multiplying (3.10) with vµ, using 6vb = b, and comparing the result with qµ· (3.10),

where the quark equations of motion are used on the left-hand side, one finds

f+ = −f− (A.3)

Together (A.2) and (A.3) imply

fT (s)

f+(s)
=
mB +mK

mB
(A.4)

The relations (A.2) – (A.4) have been obtained in [54] in the heavy-quark limit. They

apply immediately to the case where the kaon is soft, since then the heavy-quark mass is

the only large energy scale in the problem. On the other hand, the derivation makes no

explicit reference to the kaon energy and it has been argued in [55] that these relations

should be valid in the entire kinematic domain. This conjecture can be justified within the

framework of soft-collinear effective theory (SCET) [56, 57], using the form factor relations

in the large recoil limit [16, 17], which also lead to (A.2) – (A.4). A related discussion can

be found in [58].

We may thus use (A.4) in the entire range of q2 between 0 and (mB −mK)2. Since

this expression for fT /f+ is an asymptotic result in the heavy-quark limit mb ≫ ΛQCD,

an important issue is the question of subleading terms. These can be power corrections in

ΛQCD/mB and perturbative QCD corrections. The perturbative corrections were computed
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in the heavy-quark and large recoil energy limit in [17] with the result (in the NDR scheme

with MS subtraction)

mB

mB +mK

fT (s)

f+(s)
= 1 − αs(µ)CF

4π

[

ln
µ2

m2
b

+
4EK

mB − 2EK
ln

2EK

mB

]

− αs(µh)CF

4π

4π2fBfK

Nf+(s)EKλB

∫ 1

0
du

φK(u)

1 − u
(A.5)

where µ = O(mb), µh = O(
√

Λmb), and EK = O(mb) depends on s = q2/m2
B through (3.2).

We note that this relation remains valid when the kaon is soft, with EK = O(Λ). In that

case expression (A.5) simplifies. The term with αs(µh) is no longer perturbative since the

effective scale µh becomes soft. However, the entire term is power suppressed ∼ Λ/mb

because fB ∼ 1/
√
mb and f+(1) ∼ √

mb. The second term in square brackets is also power

suppressed and only the first correction ∼ αs ln(µ/mb) survives. The αs corrections can be

consistently taken into account at NNLO even though at present, for low q2, the second

term from hard spectator interactions still introduces an uncertainty of about 5 – 10%.

Power corrections to the heavy-quark limit are more difficult to compute. An estimate

can be obtained from light-cone QCD sum rules [23], which indicate that fT/f+ deviates

from 1 +mK/mB by less than ±5% for 0 < s < 0.5. The sum rule calculations include αs

corrections within their framework.

From these considerations we conclude that the relation (A.4) should be correct to

within ±10%.

B Weak annihilation in B̄ → K̄l+l−

Weak annihilation contributes to B̄0 → K̄0l+l− through QCD penguin operators. These

induce the transition bd̄→ sd̄ where the valence quarks bd̄ of the B̄0 meson are annihilated

and transformed into the constituents of the final state K̄0. The virtual photon producing

the lepton pair may be emitted from any of the four quarks in this transition. In a similar

manner the process bū → sū gives rise to weak annihilation in B− → K−l+l−, where the

transition comes from QCD penguins and from doubly Cabibbo suppressed tree operators.

To be specific we treat the case of B̄0 → K̄0l+l− first. Here the leading-power contri-

bution to weak annihilation comes from the QCD penguin operators

Q3 = (d̄ibj)V −A(s̄jdi)V −A + . . .

Q4 = (d̄b)V −A(s̄d)V −A + . . . (B.1)

The ellipsis refers to similar terms with d replaced by u, c, s and b, which do not contribute

at the order we are considering. Colour indices are denoted by i, j.

The kinematics of the annihilation process is conveniently described in terms of two

lightlike four-vectors n±. Their components can be chosen, without loss of generality, as

nµ
± = (1, 0, 0,±1) (B.2)
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The momenta of the B meson, the kaon and the lepton pair, p, k and q, respectively, can

then be written as

p =
mB

2
(n+ + n−), k =

m2
B − q2

2mB
n+, q =

q2

2mB
n+ +

mB

2
n− (B.3)

For now we assume that the dilepton mass q2 counts as order Λmb, appropriate for the

low-q2 region. This means that momentum q is nearly lightlike and approximately in

the direction of n−, whereas k is lightlike and has the direction of n+ if we neglect the

kaon mass.

Consider next the bd̄ → sd̄ annihilation diagram where the virtual photon is emitted

from the d̄ in the initial state. We will denote by Ad1 the contribution of this diagram to

the B̄0 → K̄0l+l− matrix element of Q4. Viewed as a function of the d̄ four-momentum

l = O(Λ), the diagram has the form

F (l) = F (0)(l+) + lµ⊥ F
(1)
µ (l+) (B.4)

up to terms with a relative power suppression in Λ/mb. The momentum l is decomposed

into light-cone coordinates l± = n∓ · l and l⊥, n± · l⊥ = 0, with respect to the two vectors

n± in (B.2). The expression for the light-cone projector of the B meson in momentum

space, appropriate for an amplitude of the type shown in (B.4), has been derived in [17].

It is given by

bd̄ ≡ i
fBmB

4

1+ 6v
2

[

φ+(ω) 6n+ + φ−(ω)

(

6n− − ωγν
⊥

∂

∂lν⊥

)]

γ5 (B.5)

The derivative in (B.5) extracts the F (1) contribution in (B.4). After it has been applied,

l⊥ has to be set to zero and l+ is identified with ω.

Calculating the contribution Ad1 with the projector in (B.5) we find

Ad1 = e2fBfK (ū6kv)
[

2Qd1

mB

∫ ∞

0
dω

φ−(ω)

ω − q2/mB
+
Qd1

q2

]

(B.6)

Here ūγµv is the lepton current in momentum space and Qd1 = −1/3 the down-quark

charge. The second term in (B.6) is of the same order in Λ/mb as the first term. It

has a pole in q2 and is inconsistent with electromagnetic gauge invariance. However, it

is structure independent (it depends only on fB, fK , not on the distribution amplitudes)

and is cancelled by corresponding contributions from the remaining three diagrams. These

diagrams, where the photon is emitted from the b quark, the s quark and the final-state d̄

quark (d2) give explicitly

Ab +As +Ad2 = −e2fBfK (ū6kv)Qb −Qs +Qd2

q2
(B.7)

as contributions to the matrix element of Q4. Charge conservation implies that Qb −Qs +

Qd2 ≡ Qd1, which guarantees the cancellation of the 1/q2 term in (B.6) by (B.7). The first

term in (B.6) then leads to the result (3.26) once the matrix element of Q3 is included,

which is the same as the one of Q4 up to a factor 1/3 from colour.
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We remark that the 1/q2 term and half of the first term in (B.6) come from the F (1)

part in (B.4). The latter contribution, as well as all 1/q2 terms are absent at leading power

for weak annihilation in B → K∗γ [28, 59], in contrast to the present case.

The result in (3.26) develops a logarithmic singularity when q2 becomes soft of order

Λ2, corresponding to the formal limit q2 → 0. Since the singularity is integrable, the

soft region is power suppressed in comparison to the branching ratio integrated from 0 to

q2 ∼ Λmb, as has been discussed in [28].

The annihilation contribution in (3.29) from operators Q5 = −2(d̄ibj)S−P (s̄jdi)S+P +

. . . and Q6 = −2(d̄b)S−P (s̄d)S+P + . . . is obtained in analogy to the case of Q3, Q4. Also for

Q5, Q6 there are structure-independent terms ∼ 1/q2, which cancel when all four diagrams

are added. The remaining result is again due to the diagram where the photon is emitted

from the d̄ quark in the initial state.

Acknowledgments

We thank Andrzej Buras and Thorsten Feldmann for discussions. This work was supported

in part by the DFG cluster of excellence ‘Origin and Structure of the Universe’ and by the

DFG Graduiertenkolleg GK 1054. D.N.G is supported in part by the NSF of China under

grant No. 10775124 and by the Scientific Research Foundation for the Returned Overseas

Chinese Scholars, State Education Ministry.

References

[1] M. Bona et al., SuperB: a high-luminosity asymmetric e+e− super flavor factory. Conceptual

design report, arXiv:0709.0451 [SPIRES].

[2] T. Kageyama, The SuperKEKB project, AIP Conf. Proc. 842 (2006) 1064 [SPIRES].

[3] T. Browder et al., On the physics case of a super flavour factory, JHEP 02 (2008) 110

[arXiv:0710.3799] [SPIRES].

[4] T.E. Browder, T. Gershon, D. Pirjol, A. Soni and J. Zupan, New physics at a super flavor

factory, arXiv:0802.3201 [SPIRES].

[5] G. Buchalla, G. Hiller and G. Isidori, Phenomenology of nonstandard Z couplings in exclusive

semileptonic b→ s transitions, Phys. Rev. D 63 (2000) 014015 [hep-ph/0006136] [SPIRES].

[6] Particle Data Group collaboration, C. Amsler et al., Review of particle physics,

Phys. Lett. B 667 (2008) 1 [SPIRES].

[7] Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron

and c-hadron properties at the end of 2007, arXiv:0808.1297 [SPIRES];

see http://www.slac.stanford.edu/xorg/hfag/.

[8] BELLE collaboration, K.F. Chen et al., Search for B → h(∗)νν̄ decays at BELLE,

Phys. Rev. Lett. 99 (2007) 221802 [arXiv:0707.0138] [SPIRES].

[9] BABAR collaboration, B. Aubert et al., A search for the decay B+ → K+νν̄,

Phys. Rev. Lett. 94 (2005) 101801 [hep-ex/0411061] [SPIRES].

[10] BELLE collaboration, J.T. Wei et al., Measurement of the differential branching fraction

and forward-backword asymmetry for B → K(∗)ℓ+ℓ−, arXiv:0904.0770 [SPIRES].

– 23 –

http://arxiv.org/abs/0709.0451
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.0451
http://dx.doi.org/10.1063/1.2220454
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APCPC,842,1064
http://dx.doi.org/10.1088/1126-6708/2008/02/110
http://arxiv.org/abs/0710.3799
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0710.3799
http://arxiv.org/abs/0802.3201
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.3201
http://dx.doi.org/10.1103/PhysRevD.63.014015
http://arxiv.org/abs/hep-ph/0006136
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0006136
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B667,1
http://arxiv.org/abs/0808.1297
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.1297
http://www.slac.stanford.edu/xorg/hfag/
http://dx.doi.org/10.1103/PhysRevLett.99.221802
http://arxiv.org/abs/0707.0138
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0707.0138
http://dx.doi.org/10.1103/PhysRevLett.94.101801
http://arxiv.org/abs/hep-ex/0411061
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-EX/0411061
http://arxiv.org/abs/0904.0770
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.0770


J
H
E
P
1
1
(
2
0
0
9
)
0
1
1

[11] BABAR collaboration, B. Aubert et al., Direct CP, lepton flavor and isospin asymmetries in

the decays B → K(∗)ℓ+ℓ−, Phys. Rev. Lett. 102 (2009) 091803 [arXiv:0807.4119 [SPIRES].

[12] G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms,

Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [SPIRES].

[13] G. Buchalla and A.J. Buras, QCD corrections to rare K and B decays for arbitrary top

quark mass, Nucl. Phys. B 400 (1993) 225 [SPIRES];

M. Misiak and J. Urban, QCD corrections to FCNC decays mediated by Z-penguins and

W-boxes, Phys. Lett. B 451 (1999) 161 [hep-ph/9901278] [SPIRES];

G. Buchalla and A.J. Buras, The rare decays K → πνn̄u, B → Xνν̄ and B → ℓ+ℓ−: an

update, Nucl. Phys. B 548 (1999) 309 [hep-ph/9901288] [SPIRES].

[14] A.J. Buras and M. Münz, Effective hamiltonian for B → Xse
+e− beyond leading logarithms

in the NDR and HV schemes, Phys. Rev. D 52 (1995) 186 [hep-ph/9501281] [SPIRES].

[15] M. Misiak, The b→ se+e− and b→ sγ decays with next-to-leading logarithmic QCD

corrections, Nucl. Phys. B 393 (1993) 23 [Erratum ibid. B 439 (1995) 461] [SPIRES].

[16] J. Charles, A. Le Yaouanc, L. Oliver, O. Pene and J.C. Raynal, Heavy-to-light form factors

in the heavy mass to large energy limit of QCD, Phys. Rev. D 60 (1999) 014001

[hep-ph/9812358] [SPIRES].

[17] M. Beneke and T. Feldmann, Symmetry-breaking corrections to heavy-to-light B meson form

factors at large recoil, Nucl. Phys. B 592 (2001) 3 [hep-ph/0008255] [SPIRES].

[18] M.B. Wise, Chiral perturbation theory for hadrons containing a heavy quark,

Phys. Rev. D 45 (1992) 2188 [SPIRES].

[19] G. Burdman and J.F. Donoghue, Union of chiral and heavy quark symmetries,

Phys. Lett. B 280 (1992) 287 [SPIRES].

[20] A.F. Falk and B. Grinstein, B̄ → K̄e+e− in chiral perturbation theory,

Nucl. Phys. B 416 (1994) 771 [hep-ph/9306310] [SPIRES].

[21] R. Casalbuoni et al., Phenomenology of heavy meson chiral lagrangians,

Phys. Rept. 281 (1997) 145 [hep-ph/9605342] [SPIRES].

[22] G. Buchalla and G. Isidori, Nonperturbative effects in B̄ → Xsℓ
+ℓ− for large dilepton

invariant mass, Nucl. Phys. B 525 (1998) 333 [hep-ph/9801456] [SPIRES].

[23] P. Ball and R. Zwicky, New results on B → π, K, η decay form-factors from light-cone sum

rules, Phys. Rev. D 71 (2005) 014015 [hep-ph/0406232] [SPIRES].

[24] A. Khodjamirian, T. Mannel and M. Melcher, Kaon distribution amplitude from QCD sum

rules, Phys. Rev. D 70 (2004) 094002 [hep-ph/0407226] [SPIRES].

[25] P. Ball and R. Zwicky, SU(3) breaking of leading-twist K and K∗ distribution amplitudes: a

reprise, Phys. Lett. B 633 (2006) 289 [hep-ph/0510338] [SPIRES].

[26] M. Artuso et al., B, D and K decays, Eur. Phys. J. C 57 (2008) 309 [arXiv:0801.1833]

[SPIRES].

[27] D. Becirevic and A.B. Kaidalov, Comment on the heavy → light form factors,

Phys. Lett. B 478 (2000) 417 [hep-ph/9904490] [SPIRES].

[28] M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive B → V ℓ+ℓ−, V γ

decays, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067] [SPIRES].

– 24 –

http://dx.doi.org/10.1103/PhysRevLett.102.091803
http://arxiv.org/abs/0807.4119
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,102,091803
http://dx.doi.org/10.1103/RevModPhys.68.1125
http://arxiv.org/abs/hep-ph/9512380
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9512380
http://dx.doi.org/10.1016/0550-3213(93)90405-E
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B400,225
http://dx.doi.org/10.1016/S0370-2693(99)00150-1
http://arxiv.org/abs/hep-ph/9901278
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9901278
http://dx.doi.org/10.1016/S0550-3213(99)00149-2
http://arxiv.org/abs/hep-ph/9901288
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9901288
http://dx.doi.org/10.1103/PhysRevD.52.186
http://arxiv.org/abs/hep-ph/9501281
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9501281
http://dx.doi.org/10.1016/0550-3213(93)90235-H
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B393,23
http://dx.doi.org/10.1103/PhysRevD.60.014001
http://arxiv.org/abs/hep-ph/9812358
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9812358
http://dx.doi.org/10.1016/S0550-3213(00)00585-X
http://arxiv.org/abs/hep-ph/0008255
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0008255
http://dx.doi.org/10.1103/PhysRevD.45.R2188
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D45,2188
http://dx.doi.org/10.1016/0370-2693(92)90068-F
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B280,287
http://dx.doi.org/10.1016/0550-3213(94)90554-1
http://arxiv.org/abs/hep-ph/9306310
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9306310
http://dx.doi.org/10.1016/S0370-1573(96)00027-0
http://arxiv.org/abs/hep-ph/9605342
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9605342
http://dx.doi.org/10.1016/S0550-3213(98)00261-2
http://arxiv.org/abs/hep-ph/9801456
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9801456
http://dx.doi.org/10.1103/PhysRevD.71.014015
http://arxiv.org/abs/hep-ph/0406232
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0406232
http://dx.doi.org/10.1103/PhysRevD.70.094002
http://arxiv.org/abs/hep-ph/0407226
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0407226
http://dx.doi.org/10.1016/j.physletb.2005.11.068
http://arxiv.org/abs/hep-ph/0510338
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0510338
http://dx.doi.org/10.1140/epjc/s10052-008-0716-1
http://arxiv.org/abs/0801.1833
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.1833
http://dx.doi.org/10.1016/S0370-2693(00)00290-2
http://arxiv.org/abs/hep-ph/9904490
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9904490
http://dx.doi.org/10.1016/S0550-3213(01)00366-2
http://arxiv.org/abs/hep-ph/0106067
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0106067


J
H
E
P
1
1
(
2
0
0
9
)
0
1
1

[29] M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, QCD factorization in B → πK, ππ

decays and extraction of Wolfenstein parameters, Nucl. Phys. B 606 (2001) 245

[hep-ph/0104110] [SPIRES].

[30] A.G. Grozin and M. Neubert, Asymptotics of heavy-meson form factors,

Phys. Rev. D 55 (1997) 272 [hep-ph/9607366] [SPIRES].

[31] M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, Penguins with charm and

quark-hadron duality, Eur. Phys. J. C 61 (2009) 439 [arXiv:0902.4446] [SPIRES].

[32] M. Beneke, Hadronic B decays, ECONF C 0610161 (2006) 030 [hep-ph/0612353]

[SPIRES].

[33] S.W. Bosch and G. Buchalla, Constraining the unitarity triangle with B → V γ,

JHEP 01 (2005) 035 [hep-ph/0408231] [SPIRES].

[34] M.B. Voloshin, Large O(m−2
c ) nonperturbative correction to the inclusive rate of the decay

B → Xsγ, Phys. Lett. B 397 (1997) 275 [hep-ph/9612483] [SPIRES].

[35] A. Khodjamirian, R. Ruckl, G. Stoll and D. Wyler, QCD estimate of the long-distance effect

in B → K∗γ, Phys. Lett. B 402 (1997) 167 [hep-ph/9702318] [SPIRES].

[36] G. Buchalla, G. Isidori and S.J. Rey, Corrections of order Λ2
QCD/m

2
c to inclusive rare B

decays, Nucl. Phys. B 511 (1998) 594 [hep-ph/9705253] [SPIRES].

[37] B. Grinstein and D. Pirjol, Precise |Vub| determination from exclusive B decays: controlling

the long-distance effects, Phys. Rev. D 70 (2004) 114005 [hep-ph/0404250] [SPIRES].
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